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Laser-plasma systems can be used  
as high-power, tunable photonic devices  
(e.g., wave plates, polarizers, and amplifiers)

•	 Recent experiments at Jupiter Laser Facility (JLF)  
have validated the linear theory* used to calculate  
cross-beam energy transfer (CBET) in direct-  
and indirect-drive inertial confinement fusion (ICF)

•	 Ultrafast, high-power, tunable laser-plasma wave  
plates** and polarizers† were also demonstrated using  
this stimulated Brillouin scattering (SBS)-based system

•	 Simulations illustrate how a new scheme (called  
“flying focus”) offers many advantages for stimulated 
Raman scattering (SRS)-based amplifiers

Summary

	*	P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014).
**	D. Turnbull et al., Phys. Rev. Lett. 116, 205001 (2016).
	 †	D. Turnbull et al., Phys. Rev. Lett. 118, 015001 (2017).
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CBET affects energy coupling and implosion  
symmetry in direct- and indirect-drive ICF
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Validating CBET models is an important  
component of simulating ICF implosions.

Direct drive

Indirect drive

CBET

TargetTarget



CBET theory* can be formulated as a laser-plasma 
system with a complex refractive-index perturbation 
operating on a probe beam
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*	P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014).

Such a system can modify the amplitude and/or polarization of the probe beam.
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Laser-plasma systems can be used  
as high-power, tunable photonic devices  
(e.g., wave plates, polarizers, and amplifiers)

Summary

	*	P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014).
**	D. Turnbull et al., Phys. Rev. Lett. 116, 205001 (2016).
	 †	D. Turnbull et al., Phys. Rev. Lett. 118, 015001 (2017).

•	 Recent experiments at Jupiter Laser Facility (JLF)  
have validated the linear theory* used to calculate  
cross-beam energy transfer (CBET) in direct-  
and indirect-drive inertial confinement fusion (ICF)

•	 Ultrafast, high-power, tunable laser-plasma wave  
plates** and polarizers† were also demonstrated using  
this stimulated Brillouin scattering (SBS)-based system

•	 Simulations illustrate how a new scheme (called  
“flying focus”) offers many advantages for stimulated 
Raman scattering (SRS)-based amplifiers



A pump-probe experiment with wavelength tuning  
was carried out to measure dh as a function  
of Dm (a new capability at JLF)
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*	TCC: target chamber center
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dh is in good agreement with linear theory using  
inputs from measurements and HYDRA*

E25590b

8

This is the first time that the gain curve is resolved this accurately and found to be  
in good agreement with linear theory; the first measurement of Re (dh) versus Dm.

	 *	D. Turnbull et al., Phys. Rev. Lett. 118, 015001 (2017).
**	Measurement did not include transport optic losses, inverse 		
				 bremsstrahlung absorption, or the possibility of nonideal pump spot.
	 †	Implies depletion of H from the interaction region.

Parameter Theory 
input

Measured 
value

HYDRA 
simulation

ne/nc 0.0104 0.011!0.001 ~0.009

Te (eV) 220 224!24 ~231

Ti/Te 0.1200 — ~0.090

vflow  (m/s) ~1.4 × 104 — ~1.4 × 104

I0 ~2.9 × 1013 ~3.6 × 1013** ~3.6 × 1013

Z 2.5† — 2–2
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Laser-plasma systems can be used  
as high-power, tunable photonic devices  
(e.g., wave plates, polarizers, and amplifiers)

Summary

	*	P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014).
**	D. Turnbull et al., Phys. Rev. Lett. 116, 205001 (2016).
	 †	D. Turnbull et al., Phys. Rev. Lett. 118, 015001 (2017).

•	 Recent experiments at Jupiter Laser Facility (JLF)  
have validated the linear theory* used to calculate  
cross-beam energy transfer (CBET) in direct-  
and indirect-drive inertial confinement fusion (ICF)

•	 Ultrafast, high-power, tunable laser-plasma wave  
plates** and polarizers† were also demonstrated using  
this stimulated Brillouin scattering (SBS)-based system

•	 Simulations illustrate how a new scheme (called  
“flying focus”) offers many advantages for stimulated 
Raman scattering (SRS)-based amplifiers



The system can act as a “plasma polarizer”  
with 85% to 87% extinction for these laser  
and plasma parameters
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	P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014);
D. Turnbull et al., Phys. Rev. Lett. 118, 015001 (2017).
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The system can also act as a pure tunable  
“plasma wave plate,” which was demonstrated  
in the previous year’s campaign
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	P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014);
D. Turnbull et al., Phys. Rev. Lett. 116, 205001 (2016).
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Laser-plasma systems can be used  
as high-power, tunable photonic devices  
(e.g., wave plates, polarizers, and amplifiers)

Summary

	*	P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014).
**	D. Turnbull et al., Phys. Rev. Lett. 116, 205001 (2016).
	 †	D. Turnbull et al., Phys. Rev. Lett. 118, 015001 (2017).

•	 Recent experiments at Jupiter Laser Facility (JLF)  
have validated the linear theory* used to calculate  
cross-beam energy transfer (CBET) in direct-  
and indirect-drive inertial confinement fusion (ICF)

•	 Ultrafast, high-power, tunable laser-plasma wave  
plates** and polarizers† were also demonstrated using  
this stimulated Brillouin scattering (SBS)-based system

•	 Simulations illustrate how a new scheme (called  
“flying focus”) offers many advantages for stimulated 
Raman scattering (SRS)-based amplifiers



A grating lens longitudinally disperses the focal 
positions of different colors within the pump bandwidth 
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Typically used to correct chromatic aberration, here we propose  
using it to deliberately introduce chromatic aberration.
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“Flying focus” refers to control over the propagation  
of high intensity within a laser focusing region
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With positive chirp and Tc/L = 2, high intensity travels at c/3.
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It is advantageous for laser-plasma amplifiers  
that high intensity propagate at –c
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Chirp plus grating lens provides spatiotemporal  
control over propagation of high intensity
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	D. H. Froula et al., “Flying Focus: Spatiotemporal Control  
	of the Longitudinal Laser Beam Intensity,” in preparation.
*	LWFA: laser wakefield �accelerator



Amplifiers based on stimulated Raman scattering*  
can also be used to create ultraintense laser beams
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•	 Typically, the goal is to transfer 
most of the energy from a tens  
of picoseconds “long”-pulse  
beam to a frequency-downshifted 
~100-fs beam

•	 Energy transfer is mediated by  
an electron plasma wave (EPW)

•	 Experiments have been limited by: 

–– thermal effects

–– spontaneous SRS  

*	V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999).

Pump beam

Seed
pulseAmplified pulse

Depleted pump



Three-wave coupled equations, plus ionization  
model, are solved numerically* to investigate  
flying-focus Raman amplification (FFRA)
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*	D. S. Clark and N. J. Fisch, Phys. Plasmas 9, 2772 (2002);
	 D. S. Clark and N. J. Fisch, Phys. Plasmas 10, 3363 (2003).

w(a) is ionization rate  
(Keldysh formula)

	 v1,2: 	collisional damping
	 v3: 	collisional/Landau damping
	 v3 á 0:	neglect EPW advection
	 d~ = 0:	neglect detuning
	S3 + v3Te:	 tunable noise source

Flying focus is included via the time-varying boundary condition and  
intensification of pump as it propagates across interaction region.
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FFRA forms an ionization wave that travels at –c
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Flying focus
ne = 6 × 1018/cm3

Ip = 1.4 × 1014 W/cm2

4-mm length
26.7-ps pump
mp = 1 nm
f/5 pump
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With an injected seed pulse, ideal plasma  
amplifier behavior is observed 
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Flying focus
ne = 6 × 1018/cm3

Ip = 1.4 × 1014 W/cm2

4-mm length
26.7-ps pump
mp = 1 nm
f/5 pump
xseed = 500 fs
Te controlled by IB*
S3 = 0.05v3Te

*	IB: inverse bremsstrahlung
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With a collimated pump, plasma is ionized earlier, 
growth is slower, and pump depletion does not occur 
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Standard focus
ne = 6 × 1018/cm3

Ip = 1.4 × 1014 W/cm2

4-mm length
26.7-ps pump
mp = 1 nm
f/3 pump
xseed = 500 fs
Te controlled by IB
S3 = 0.05v3Te






Temperature (approximately constant and tunable  
in FFRA) accounts for the difference between  
the previous two cases
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•	 Duration of plasma heating  
prior to seed arrival is  
approximately constant in FFRA

•	 Te can be tuned by adjusting  
the delay between ionization  
and seed arrival

Te tunability can minimize  
damping, mitigate thermal  
detuning, prevent wave breaking,  
and preclude kinetic effects. 500
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With Te fixed to look at nonthermal differences, 
spontaneous SRS grows and degrades the interaction
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Standard focus
ne = 6 × 1018/cm3

Ip = 1.4 × 1014 W/cm2

4-mm length
26.7-ps pump
mp = 1 nm
f/3 pump
xseed = 500 fs
Te = 45 eV
S3 = 0.05v3Te

FFRA also mitigates spontaneous SRS.






FFRA has many advantages over conventional schemes
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•	 Interaction intensity follows the seed,  
without high f/# or a waveguide

•	 Can produce an ionization wave  
that immediately precedes seed

–– mitigates spontaneous SRS 

–– eliminates thermal detuning

–– enables temperature optimization

–– enables a zero detuning amplifier  
without adverse side effects

*	D. Turnbull et al., “Raman Amplification with a Flying Focus,” in preparation.
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Summary/Conclusions

	*	P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014).
**	D. Turnbull et al., Phys. Rev. Lett. 116, 205001 (2016).
	 †	D. Turnbull et al., Phys. Rev. Lett. 118, 015001 (2017).

Laser-plasma systems can be used  
as high-power, tunable photonic devices  
(e.g., wave plates, polarizers, and amplifiers)

•	 Recent experiments at Jupiter Laser Facility (JLF)  
have validated the linear theory* used to calculate  
cross-beam energy transfer (CBET) in direct-  
and indirect-drive inertial confinement fusion (ICF)

•	 Ultrafast, high-power, tunable laser-plasma wave  
plates** and polarizers† were also demonstrated using  
this stimulated Brillouin scattering (SBS)-based system

•	 Simulations illustrate how a new scheme (called  
“flying focus”) offers many advantages for stimulated 
Raman scattering (SRS)-based amplifiers



The ion-acoustic wave (IAW) resonance peak location 
suggests an impact of ion-species separation
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Most inputs are consistent with experimental measurements and/or a 3-D HYDRA  
simulation, but it is also necessary to invoke species separation to match the peak.

Parameter Theory 
input

Measured 
value

3-D HYDRA 
simulation

ne/nc 0.0104 0.011!0.001 ~0.009

Te (eV) 220 224!24 ~231

Ti/Te 0.1200 — ~0.090

vflow  (m/s) ~1.4 × 104 — ~1.4 × 104

I0 ~2.9 × 1013 ~3.6 × 1013* ~3.6 × 1013

Z 2.5** — 2

	*	Measurement did not include transport optic losses, inverse 		
		 bremsstrahlung absorption, or the possibility of nonideal pump spot.
**	Implies depletion of H from the interaction region.



Recreating these conditions, ion-feature Thomson 
scattering will provide a more-direct measurement
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The idea is to probe the center of the channel to see if the Ar fraction  
increases because of the channel expansion dominated by H.

*	All curves fix Te = 250 eV, Ti/Te = 0.15, ZAr = 13, ne = 1019 cm–3
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The refractive-index variation associated with the optical 
resonance also creates “slow” and “fast” light*
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Group velocity 
–

v c c
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h
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= = ,  

so hg can be large near optical resonance

*	P. A. Michel and G. Goyon, Lawrence Livermore National Laboratory, private communication (2017).

Slow and fast light have been demonstrated in other media, but not yet in plasma.
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The group index scales like gain over  
the resonance bandwidth
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•	 Group velocity slows to ~c/25  
by increasing ne and Ip  
by factors of ~3 

•	 Now it takes ~80 ps to propagate 
across the 1-mm interaction 
length (as opposed to ~3)!

From the existing literature on slow light, the implications  
for such dramatic changes to group velocity are not clear.
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We will exploit the anisotropic system again to directly 
measure the delays between polarization components
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We aim to better understand and help clarify the nature of SBS-based slow/fast light.
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OMEGA

OMEGA EP

The tunable OMEGA P9 beam (TOP9) will be used  
to develop a CBET platform at the Omega Laser Facility
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	*	FABS: full-aperture backscatter
**	TBD: transmitted-beam diagnostic

Parameter Minimum requirement

m range 350.2 to 353.4 nm

m step size 0.01 nm

Power on target 0.1 TW (351 nm to 352.6 nm)
0.01 TW (350.2 nm to 353.4 nm)

Polarization Linear (20:1 contrast), !90º range

Repetition rate 90 min

Spot size Compatible with existing OMEGA 
distributed phase plates

Additional FABS* and TBD** diagnostics



Initial experiments will test CBET in ICF-relevant 
conditions and investigate the onset of nonlinearities
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The previous two-beam experiments can be repeated with Te and ne closer  
to ICF, then seed intensity will be increased to probe the nonlinear regime.
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OMEGA will facilitate the study of multiple IAW’s 
coexisting in the same volume
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This tests CBET under conditions that are  
relevant to both direct and indirect drive.
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CBET beamlets* experiments using TOP9 will 
demonstrate CBET mitigation via wavelength detuning
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This configuration will be a robust test of our integrated CBET hydrodynamic  
models and demonstrate CBET mitigation using wavelength shifting.
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*		D. H. Edgell and D. H. Froula, Laboratory for Laser Energetics, private communication (2017).


